KeypointsDatasetWithDesc
- class hybrid_learning.experimentation.fuzzy_exp.fuzzy_exp_helpers.KeypointsDatasetWithDesc(img_size, device=None, use_boxes=True, reduce_gt_masks=True, **kwargs)[source]
 Bases:
KeypointsDatasetWrapper around coco dataset class returning tuples of
(descriptor, (image, anns)). Default trafo turns images into tensors, anns into mask tensors and resizes all toimg_size. In case a transform is given that should apply on(image, anns), don’t forget to use atrafos.UnfoldTuple()transform.Public Data Attributes:
Inherited from : py: class:COCODataset
COMMERCIAL_LICENSE_IDSIDs of COCO image licenses that allow for commercial use.
DATASET_ROOT_TEMPLDefault root directory template for image files that accepts the
split('train'or'val').ANNOTATION_FP_TEMPLDefault template for the annotation file path that accepts the
split('train'or'val') and therootdirectory.DEFAULT_IMG_SIZEDefault target size of images to use for the default transforms as
(height, width).settingsReturn information to init new dataset.
license_mappingThe mapping of image IDs to license descriptions and URLs.
Inherited from : py: class:BaseDataset
settingsReturn information to init new dataset.
Public Methods:
getitem(i)Return tuple of
(descriptor, (image, anns)).Inherited from : py: class:KeypointsDataset
getitem(i)Return tuple of
(descriptor, (image, anns)).Inherited from : py: class:COCODataset
subset(*[, license_ids, body_parts, num, ...])Restrict the items by the given selection criteria and an optional custom condition.
shuffle()Wrapper around
subset()that only shuffles the instance.to_raw_anns([description, save_as])Create the content of a new valid annotations file restricted to the current image IDs.
copy_to([root_root, description, overwrite, ...])Create a new dataset by copying used images and annotations to new root folder.
load_orig_image(i)Load unmodified image by index in dataset.
descriptor(i)Return the image file name for the item at index
i.image_filepath(i)Path to image file at index
i.image_attribution(i)Get attribution information for image at index
i.image_meta(i)Load the dict with meta information for image at index
i.raw_anns(i)Return the list of raw annotations for image at index
i.getitem(i)Return tuple of
(descriptor, (image, anns)).Inherited from : py: class:BaseDataset
getitem(i)Return tuple of
(descriptor, (image, anns)).descriptor(i)Return the image file name for the item at index
i.Special Methods:
__init__(img_size[, device, use_boxes, ...])Overwrite the default transform.
Inherited from : py: class:KeypointsDataset
__init__(img_size[, device, use_boxes, ...])Overwrite the default transform.
Inherited from : py: class:COCODataset
__init__(img_size[, device, use_boxes, ...])Overwrite the default transform.
__len__()Length is given by the length of the index mapping.
Inherited from : py: class:BaseDataset
__init__(img_size[, device, use_boxes, ...])Overwrite the default transform.
__len__()Length is given by the length of the index mapping.
__getitem__(idx)Get item from
idxin dataset with transformations applied.__repr__()Nice printing function.
Inherited from : py: class:Dataset
__getitem__(idx)Get item from
idxin dataset with transformations applied.__add__(other)
- __init__(img_size, device=None, use_boxes=True, reduce_gt_masks=True, **kwargs)[source]
 Overwrite the default transform.
- __parameters__ = ()
 
- after_cache_transforms: Callable
 Transformation function applied after consulting the cache (no matter, whether the tuples was retrieved from cache or not). Use these transformations instead of
transformsto ensure the transformation is always applied, regardless of caching. By default, tensor gradients are disabled and tensors are moved to a common device (see_get_default_after_cache_trafo()).
- coco: COCO
 Internal COCO handle.
- dataset_root: str
 Assuming the dataset is saved in some storage location, a root from which to navigate to the dataset information.
- img_ann_ids: List[Tuple[int, List[int]]]
 Mapping of indices in this dataset to COCO image and annotation IDs. Each entry in the list is a tuple of the form
(image_id, [annotation_id, ...])where the annotations belong to the corresponding image.
- split: Optional[DatasetSplit]
 Optional specification what use-case this dataset is meant to represent, e.g. training, validation, or testing.
- transforms: Callable
 Transformation function applied to each item tuple before return. Applied in
__getitem__(). Default transformations are sub-class-specific. Items transformed usingtransformscan be cached by settingtransforms_cache. If the transformations should be applied always, regardless of caching, useafter_cache_transforms.
- transforms_cache: Optional[Cache]
 Cache for the transformed
(input, target)tuples. If set,__getitem__()will first try to load the tuple from cache before loading and transforming it normally. Items not in the cache are put in there aftertransformsis applied.