load_orig_and_masks
- hybrid_learning.experimentation.fuzzy_exp.fuzzy_exp_eval.load_orig_and_masks(img_fn, orig_size=None, imgs_dir=None, pedestrian_cache_dir=None, gt_pedestrian_cache_dir=None, concept_cache_dirs=None, final_cache_dir=None, pedestrian_key='pedestrian', gt_pedestrian_key='gt_pedestrian', device=None, use_pretty_names=True, raise_on_missing=False)[source]
Load the original image and masks at index
image_id
from configured cache directories.- Parameters
orig_size (Optional[Tuple[int, int]]) – size in
(height, width)
to which to pad and resize the original image; if not given defaults to size of pedestrian mask, and no resizing if this is unknownfinal_cache_dir (Optional[str]) – cache directory for the formula output files
use_pretty_names (bool) – whether to transform mask names using
formula_to_display_name()
pedestrian_key (str) – mask key for person mask
gt_pedestrian_key (str) – mask key for ground truth person mask
device – onto which device to load the masks
raise_on_missing (bool) – whether to raise when a mask file is missing or just set the respective value to
None
img_fn (str) –
- Returns
tuple
(original_image, masks_dict)
with the special mask dict keys'formula'
for the formula mask, andpedestrian_key
for the DNN output.- Return type