plot_metric
- hybrid_learning.experimentation.fuzzy_exp.fuzzy_exp_vis.plot_metric(metrics_pd, model_key, metrics='recall', verbose=True, formulas=None, logic_types=('boolean', 'lukasiewicz', 'product', 'goedel'), title='{model_key} {metric}', formula_name_col={'formula_attrs': 'formula'}, save_as=None, xlim=(0, 1), to_pretty_names=None, ax=None)[source]
Plot a bar chart for each of the given metrics from entries in metrics_pd.
- Parameters
metrics_pd (DataFrame) – DataFrame with all of
formula_name_col
,"model_key"
,metrics
,logic_type
as columnsverbose (bool) – whether to display some intermediate results
formulas (Optional[tuple]) – specifier strings of the formulas to match (simple filter option on
formula_name_col
column)logic_types (tuple) – specifier strings of the logic types to match (simple filter option on
"logic_type"
column)title (str) – figure title; may contain formatting placeholders
{model_key}
and{metric}
formula_name_col (Union[str, Dict[str, str]]) – name of the column containing the formula specs to match with
formulas
save_as (Optional[str]) – if given, either directory or file path where to save this plot
xlim (Tuple[float, float]) – if set, the minimum and maximum values displayed on the x-axis; if
None
orFalse
, automatically determined by matplotlibto_pretty_names (Optional[Dict[str, str]]) – dictionary mapping values of
model_key
andmetrics
to pretty namesax – an axis into which to plot; by default, a new figure is created
model_key (str) –
metrics (str) –
- Returns
list with the filtered DataFrames that got plotted
- Return type
List[DataFrame]