ModelExtender
- class hybrid_learning.concepts.models.model_extension.ModelExtender(model, extensions, return_orig_out=True)[source]
Bases:
ActivationMapGrabber
This class wraps a given model and extends its output. The extension are models taking intermediate output of the original model at given sub-modules. An extension is specified by the information in a dictionary
{<sub-module ID> : {<name>: <model>}}
.where the sub-module must be one of the wrapped model, and the
<model>
is thetorch.nn.Module
to feed the sub-module output. The name must be unique amongst all registered models: It is checked when registering new extensions and used as key for the extension model outputs.Extensions can be registered and unregistered using the corresponding methods
register_extension()
andunregister_extension()
.The information about registered extensions can be accessed via the following properties:
extensions
: extension models indexed by sub-module ID in the format described aboveextension_models
: Just a dict-like with registered models by namename_registrations
: Just a dict with registered extension names by sub-module
The output of a forward run then is a tuple of the main model output and a dict
{<name>: <ext model output>}
. Ifreturn_orig_out
isFalse
, only the dict is returned.Public Data Attributes:
Dict mapping main model sub-modules to their registered extension model names.
Nested dict holding all extension modules indexed by ID and layer.
List of the names of all registered extensions.
Inherited from : py: class:HooksHandle
registered_submodules
List of IDs of the registered sub-modules.
Public Methods:
register_extension
(name, module_id, model)Register a new extension model as name.
unregister_extension
(name)Unregister an existing extension by name.
register_extensions
(new_extensions)Register all specified new extensions.
forward
(*inps)Pytorch forward method.
Inherited from : py: class:ActivationMapGrabber
forward
(*inps)Pytorch forward method.
stump
(module_id)Provide a
ModelStump
(in eval mode) which yields act maps of given sub-module.Inherited from : py: class:HooksHandle
register_submodule
(module_id)Register further submodule of to extract intermediate output from.
unregister_submodule
(module_id)Unregister a submodule for intermediate output retrieval.
get_module_by_id
(m_id)Get actual sub-module object within wrapped model by module ID.
forward
(*inps)Pytorch forward method.
Inherited from : py: class:Module
forward
(*inps)Pytorch forward method.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_parameter
(name, param)Adds a parameter to the module.
add_module
(name, module)Adds a child module to the current module.
get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.cuda
([device])Moves all model parameters and buffers to the GPU.
xpu
([device])Moves all model parameters and buffers to the XPU.
cpu
()Moves all model parameters and buffers to the CPU.
type
(dst_type)Casts all parameters and buffers to
dst_type
.float
()Casts all floating point parameters and buffers to
float
datatype.double
()Casts all floating point parameters and buffers to
double
datatype.half
()Casts all floating point parameters and buffers to
half
datatype.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
register_backward_hook
(hook)Registers a backward hook on the module.
register_full_backward_hook
(hook)Registers a backward hook on the module.
register_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_forward_hook
(hook)Registers a forward hook on the module.
state_dict
([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.parameters
([recurse])Returns an iterator over module parameters.
named_parameters
([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
buffers
([recurse])Returns an iterator over module buffers.
named_buffers
([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
children
()Returns an iterator over immediate children modules.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
modules
()Returns an iterator over all modules in the network.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
train
([mode])Sets the module in training mode.
eval
()Sets the module in evaluation mode.
requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
share_memory
()extra_repr
()Set the extra representation of the module
Special Methods:
__init__
(model, extensions[, return_orig_out])Init.
Inherited from : py: class:ActivationMapGrabber
__init__
(model, extensions[, return_orig_out])Init.
Inherited from : py: class:HooksHandle
__init__
(model, extensions[, return_orig_out])Init.
__del__
()Unregister all hooks held by this handle on handle delete.
Inherited from : py: class:Module
__init__
(model, extensions[, return_orig_out])Init.
__call__
(*input, **kwargs)Call self as a function.
__setstate__
(state)__getattr__
(name)__setattr__
(name, value)Implement setattr(self, name, value).
__delattr__
(name)Implement delattr(self, name).
__repr__
()Return repr(self).
__dir__
()Default dir() implementation.
- __init__(model, extensions, return_orig_out=True)[source]
Init.
- Parameters
model (Module) – the model to extend
extensions (Dict[str, Dict[str, Module]]) – extensions to initially register; for format see
register_extensions
return_orig_out (bool) – see
return_orig_out
- register_extension(name, module_id, model)[source]
Register a new extension model as name. Updates the hooks needed for acquiring extension output.
- Raise
ValueError
if there is a name for which already an extension is registered.- Parameters
- Return type
None
- register_extensions(new_extensions)[source]
Register all specified new extensions.
- Parameters
new_extensions (Dict[str, Dict[str, Module]]) – extensions in the format
{module_id: {extension_name: extension_module}}
- Raise
ValueError
if there is a name for which already an extension is registered.- Return type
None
- unregister_extension(name)[source]
Unregister an existing extension by name. Updates the hooks and the registration lists.
- Parameters
name (str) –
- Return type
None
- extension_models: torch.nn.modules.container.ModuleDict
Dictionary of
extension_models
modules indexed by the layer they are applied to. Do only change viaregister_extension()
andunregister_extension()
, as the indices must be in synchronization with registered submodules.
- property extensions: Dict[str, Dict[str, torch.nn.modules.module.Module]]
Nested dict holding all extension modules indexed by ID and layer. Merged information in
name_registrations
andextension_models
.- Returns
Dict of the form
{<sub-module ID>: {<ext name>: <registered ext model>}}
The name is unique amongst all registered extension models over all sub-modules
- hook_handles: Dict[str, torch.utils.hooks.RemovableHandle]
Dictionary of hooks; for each sub-module to grab output from, a hook is registered. On each forward, the hook for a sub-module of ID
m
writes the intermediate output of the sub-module into_intermediate_outs[m]
. The dictionary saves for the sub-module ID the hook handle.
- property name_registrations: Dict[str, List[str]]
Dict mapping main model sub-modules to their registered extension model names. The names of the extensions must match those used as keys in
extension_models
:{<sub-module ID>: [<extension name>, ...]}
- return_orig_out: bool
Whether to return a tuple
(original_output, extension_outputs)
or only the dictextension_outputs
.
- wrapped_model: torch.nn.modules.module.Module
Original model from which intermediate and final output are retrieved.