ActivationMapGrabber
- class hybrid_learning.concepts.models.model_extension.ActivationMapGrabber(model, module_ids=None)[source]
Bases:
HooksHandle
Wrapper class to obtain intermediate outputs from models. This is done using the hooking mechanism of
torch.nn.Module
.The wrapper adds to the output of a model the intermediate output of specified sub-modules of it. The output of a forward pass then then is as tuple of the form
(output_of_wrapped_model, {module_id: intermediate_out_of_sub_module})
.The module ID is the specifier with which the sub-module can be selected from
torch.nn.Module.named_modules()
of the wrappedmodel
.The sub-modules can be registered and unregistered. The currently registered sub-modules to obtain intermediate output from and the corresponding hooks are stored in the dictionary
hook_handles
.Public Data Attributes:
Inherited from : py: class:HooksHandle
registered_submodules
List of IDs of the registered sub-modules.
Public Methods:
forward
(*inps)Return tuple of outputs of the wrapped model and of the sub-modules.
stump
(module_id)Provide a
ModelStump
(in eval mode) which yields act maps of given sub-module.Inherited from : py: class:HooksHandle
register_submodule
(module_id)Register further submodule of to extract intermediate output from.
unregister_submodule
(module_id)Unregister a submodule for intermediate output retrieval.
get_module_by_id
(m_id)Get actual sub-module object within wrapped model by module ID.
forward
(*inps)Return tuple of outputs of the wrapped model and of the sub-modules.
Inherited from : py: class:Module
forward
(*inps)Return tuple of outputs of the wrapped model and of the sub-modules.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_parameter
(name, param)Adds a parameter to the module.
add_module
(name, module)Adds a child module to the current module.
get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.cuda
([device])Moves all model parameters and buffers to the GPU.
xpu
([device])Moves all model parameters and buffers to the XPU.
cpu
()Moves all model parameters and buffers to the CPU.
type
(dst_type)Casts all parameters and buffers to
dst_type
.float
()Casts all floating point parameters and buffers to
float
datatype.double
()Casts all floating point parameters and buffers to
double
datatype.half
()Casts all floating point parameters and buffers to
half
datatype.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
register_backward_hook
(hook)Registers a backward hook on the module.
register_full_backward_hook
(hook)Registers a backward hook on the module.
register_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_forward_hook
(hook)Registers a forward hook on the module.
state_dict
([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.parameters
([recurse])Returns an iterator over module parameters.
named_parameters
([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
buffers
([recurse])Returns an iterator over module buffers.
named_buffers
([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
children
()Returns an iterator over immediate children modules.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
modules
()Returns an iterator over all modules in the network.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
train
([mode])Sets the module in training mode.
eval
()Sets the module in evaluation mode.
requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
share_memory
()extra_repr
()Set the extra representation of the module
Special Methods:
__init__
(model[, module_ids])Init.
Inherited from : py: class:HooksHandle
__init__
(model[, module_ids])Init.
__del__
()Unregister all hooks held by this handle on handle delete.
Inherited from : py: class:Module
__init__
(model[, module_ids])Init.
__call__
(*input, **kwargs)Call self as a function.
__setstate__
(state)__getattr__
(name)__setattr__
(name, value)Implement setattr(self, name, value).
__delattr__
(name)Implement delattr(self, name).
__repr__
()Return repr(self).
__dir__
()Default dir() implementation.
- stump(module_id)[source]
Provide a
ModelStump
(in eval mode) which yields act maps of given sub-module.