BalancedBCELoss
- class hybrid_learning.concepts.train_eval.kpis.batch_kpis.BalancedBCELoss(factor_pos_class=None, reduction='mean', from_logit=False)[source]
Bases:
Module
Balanced binary cross entropy loss. This is a wrapper around torch.nn.functional.binary_cross_entropy which allows to enter a class weighting factor \(b\) to have for a batch \(B\) of outputs and targets \((x, y)\) the formula
\[\text{BalancedBCELoss}(B) = \text{reduction}( \sum_{(x,y)\in B} b \cdot y \cdot \log(x) + (1-b)(1-y)\log(1-x) )\]If no fixed
factor_pos_class
is given, this is determined batch-wise as1-target.mean()
. Target values are assumed to be binary. Input values are assumed to be in \((0,1]\) iffrom_logit
is false, else they are assumed to be in logit space. The reduction can bemean
,sum
, ornone
.Public Data Attributes:
Settings dict to reproduce the instance
Public Methods:
forward
(inputs, targets)Pytorch forward method.
Inherited from : py: class:Module
forward
(inputs, targets)Pytorch forward method.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_parameter
(name, param)Adds a parameter to the module.
add_module
(name, module)Adds a child module to the current module.
get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.cuda
([device])Moves all model parameters and buffers to the GPU.
xpu
([device])Moves all model parameters and buffers to the XPU.
cpu
()Moves all model parameters and buffers to the CPU.
type
(dst_type)Casts all parameters and buffers to
dst_type
.float
()Casts all floating point parameters and buffers to
float
datatype.double
()Casts all floating point parameters and buffers to
double
datatype.half
()Casts all floating point parameters and buffers to
half
datatype.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.to_empty
(*, device)Moves the parameters and buffers to the specified device without copying storage.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
register_backward_hook
(hook)Registers a backward hook on the module.
register_full_backward_hook
(hook)Registers a backward hook on the module.
register_forward_pre_hook
(hook)Registers a forward pre-hook on the module.
register_forward_hook
(hook)Registers a forward hook on the module.
state_dict
([destination, prefix, keep_vars])Returns a dictionary containing a whole state of the module.
load_state_dict
(state_dict[, strict])Copies parameters and buffers from
state_dict
into this module and its descendants.parameters
([recurse])Returns an iterator over module parameters.
named_parameters
([prefix, recurse])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
buffers
([recurse])Returns an iterator over module buffers.
named_buffers
([prefix, recurse])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
children
()Returns an iterator over immediate children modules.
named_children
()Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
modules
()Returns an iterator over all modules in the network.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
train
([mode])Sets the module in training mode.
eval
()Sets the module in evaluation mode.
requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
zero_grad
([set_to_none])Sets gradients of all model parameters to zero.
share_memory
()extra_repr
()Set the extra representation of the module
Special Methods:
__init__
([factor_pos_class, reduction, ...])Init.
__repr__
()Return repr(self).
__str__
()Return str(self).
Inherited from : py: class:Module
__init__
([factor_pos_class, reduction, ...])Init.
__call__
(*input, **kwargs)Call self as a function.
__setstate__
(state)__getattr__
(name)__setattr__
(name, value)Implement setattr(self, name, value).
__delattr__
(name)Implement delattr(self, name).
__repr__
()Return repr(self).
__dir__
()Default dir() implementation.