SameSize
- class hybrid_learning.datasets.transforms.tuple_transforms.SameSize(interpolation='bilinear', resize_target=False, only_two_tuples=None, resize_to_index=None)[source]
Bases:
TupleTransforms
Given a tuple of input and target image, resize the target to the size of the input. Both input and target image must be given as
torch.Tensor
.Since the center points of pixels are considered, upscaling may lead to edge pixel values that exceed the previous maximum values. Thus, make sure to clamp the output in case e.g. sigmoid output is considered:
>>> from hybrid_learning.datasets.transforms import Lambda, SameSize >>> (SameSize(resize_target=False) ... + OnInput(Lambda(lambda t: t.clamp(0, 1)))) Compose(transforms=[SameSize(...), OnInput(trafo=Lambda(...))])
Public Data Attributes:
Settings to reproduce the instance.
Inherited from : py: class:Transform
IDENTITY_CLASS
The identity class or classes for composition / addition.
Settings to reproduce the instance.
Public Methods:
apply_to
(*masks)Application of size adaptation.
Inherited from : py: class:TupleTransforms
apply_to
(*masks)Application of size adaptation.
Inherited from : py: class:Transform
apply_to
(*masks)Application of size adaptation.
Special Methods:
__init__
([interpolation, resize_target, ...])Init.
Inherited from : py: class:TupleTransforms
__init__
([interpolation, resize_target, ...])Init.
__call__
(*inputs)Apply the transformation to the tuple
(inp, target)
; the output again is a tuple.Inherited from : py: class:Transform
__repr__
()Return repr(self).
__eq__
(other)Return self==value.
__copy__
()Return a shallow copy of self using settings.
__add__
(other)Return a flat composition of
self
withother
.__radd__
(other)Return a flat composition of
other
andself
.__call__
(*inputs)Apply the transformation to the tuple
(inp, target)
; the output again is a tuple.
- __init__(interpolation='bilinear', resize_target=False, only_two_tuples=None, resize_to_index=None)[source]
Init.
Note
Mind that other interpolation methods than
'nearest'
will produce non-binary outputs.- Parameters
resize_target (bool) – if set to true, shortcut for
resize_to_index=0, only_two_tuples=True
, else provides defaultresize_to_index=-1, only_two_tuples=False
only_two_tuples (Optional[bool]) – check that only two-tuples are provided
resize_to_index (Optional[int]) – the index of a mask to which to resize; see also
resize_target
interpolation – the interpolation method to use, parameter to
torch.nn.Upsample
;