OnBothSides
- class hybrid_learning.datasets.transforms.tuple_transforms.OnBothSides(trafo)[source]
Bases:
_PartialTupleTrafo,TwoTupleTransformsApply a given transformation to both input and target of a tuple in parallel. Shortcut for
OnAll(trafo)with tuple length enforcement.Public Data Attributes:
Inherited from : py: class:_PartialTupleTrafo
settingsSettings to reproduce the instance.
Inherited from : py: class:Transform
IDENTITY_CLASSThe identity class or classes for composition / addition.
settingsSettings to reproduce the instance.
Public Methods:
apply_to(inp, target)Apply transformation in parallel to both
inpandtarget.Inherited from : py: class:TwoTupleTransforms
apply_to(inp, target)Apply transformation in parallel to both
inpandtarget.Inherited from : py: class:TupleTransforms
apply_to(inp, target)Apply transformation in parallel to both
inpandtarget.Inherited from : py: class:Transform
apply_to(inp, target)Apply transformation in parallel to both
inpandtarget.Special Methods:
Inherited from : py: class:_PartialTupleTrafo
__init__(trafo)Init.
Inherited from : py: class:TwoTupleTransforms
__call__(inp, target)Apply the transformation to the tuple
(inp, target); the output again is a tuple.Inherited from : py: class:TupleTransforms
__init__(trafo)Init.
__call__(inp, target)Apply the transformation to the tuple
(inp, target); the output again is a tuple.Inherited from : py: class:Transform
__repr__()Return repr(self).
__eq__(other)Return self==value.
__copy__()Return a shallow copy of self using settings.
__add__(other)Return a flat composition of
selfwithother.__radd__(other)Return a flat composition of
otherandself.__call__(inp, target)Apply the transformation to the tuple
(inp, target); the output again is a tuple.
- Parameters
trafo (Callable) –