ToActMap
- class hybrid_learning.datasets.transforms.image_transforms.ToActMap(act_map_gen, device=None, requires_grad=False)[source]
Bases:
ImageTransformEvaluate a given image by a torch model on the correct device. The model should return tensors, e.g. be a
ModelStump. Ifdeviceis given, the parameters of the modelact_map_genare moved to this device.Warning
Ensure moving of the model parameters to a different device does not interfere with e.g. optimization of these parameters in case
deviceis given!Public Data Attributes:
Settings to reproduce the instance.
Inherited from : py: class:Transform
IDENTITY_CLASSThe identity class or classes for composition / addition.
Settings to reproduce the instance.
Public Methods:
apply_to(img_t)Collect output of activation map generator for image
img_tas input.Inherited from : py: class:ImageTransform
apply_to(img_t)Collect output of activation map generator for image
img_tas input.Inherited from : py: class:Transform
apply_to(img_t)Collect output of activation map generator for image
img_tas input.Special Methods:
__init__(act_map_gen[, device, requires_grad])Init.
Inherited from : py: class:ImageTransform
__call__(img)Application of transformation.
Inherited from : py: class:Transform
__repr__()Return repr(self).
__eq__(other)Return self==value.
__copy__()Return a shallow copy of self using settings.
__add__(other)Return a flat composition of
selfwithother.__radd__(other)Return a flat composition of
otherandself.__call__(img)Application of transformation.
- __init__(act_map_gen, device=None, requires_grad=False)[source]
Init.
- Parameters
act_map_gen (Module) – model the output of which is interpreted as activation maps
device (Optional[Union[str, device]]) – the device to operate the transformation on
requires_grad (bool) – whether the model and the transformation output should require gradients (this trafo may be unpickleable in combination with cuda usage of set to
True)
- apply_to(img_t)[source]
Collect output of activation map generator for image
img_tas input. The evaluation ofact_map_genonimg_tis conducted ondeviceif this is set.- Parameters
img_t (Tensor) – image for which to obtain activation map; make sure all necessary transformations are applied
- Returns
activation map as
torch.Tensor- Return type
- act_map_gen: torch.nn.modules.module.Module
Callable torch model that accepts and returns a
torch.Tensor.