annotation_to_sizes
- hybrid_learning.datasets.custom.coco.keypoints_processing.annotation_to_sizes(annotation, all_keypoint_names=('nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle'), assumed_height=1.7, factors= bbox_width bbox_height ... upper_arm lower_arm slope 1 1 ... 3.7200 4.4600 intersect 0 0 ... 0.4486 0.5694 [2 rows x 11 columns])[source]
Estimate the body size of a person in an image in pixels from skeletal keypoints and linear formulas given by
factors
.The
factors
holds parameters of linear functions that each calculate an estimate of the physical body height of a person in meters from a given anatomical size in meters (seehybrid_learning.datasets.custom.person_size_estimation.FACTORS
). Assuming a real height in meters ofassumed_height
, missing sizes are inferred using these linear relations.- Parameters
annotation (Dict[str, Any]) – MS COCO style annotation dict for a single instance holding skeletal keypoint information
all_keypoint_names (Sequence[str]) – list of names for each keypoint occurring in the annotation in order
assumed_height – the assumed total height of the person in meters
factors – see parameters for linear relations between anatomic sizes and total body height in meters as in
hybrid_learning.datasets.custom.person_size_estimation.FACTORS
- Returns
a
pandas.DataFrame
representing a mapping of anatomic size identifiers (columns) each to a mapping with keys (index)'len'
: the value of the anatomic size in pixels'tot_height'
: the value of the total body size of the person in pixels assuming a real body height ofassumed_height
in meters and estimated from the one anatomic size using relation fromfactors
- Return type