NPYCache
- class hybrid_learning.datasets.caching.NPYCache(cache_root=None)[source]
Bases:
FileCache
File cache that uses numpy saving and loading mechanism to cache
torch.Tensor
objects. Cannot use sparse tensor representation for saving for now. For further details see super class.Public Data Attributes:
The file ending to append to descriptors to get the file path.
Inherited from : py: class:FileCache
The file ending to append to descriptors to get the file path.
Public Methods:
put_file
(filepath, obj)Save
obj
tofilepath
usingnumpy.save()
.load_file
(filepath)Load
obj
fromfilepath
usingnumpy.load()
.Inherited from : py: class:FileCache
put
(descriptor, obj)Store
obj
under the cache root usingput_file()
.load
(descriptor)Load object from file
descriptor
+FILE_ENDING
under cache root.clear
()Remove all files from cache root.
descriptors
()Provide paths of all cached files with ending stripped and relative to cache root.
descriptor_to_fp
(descriptor)Return the file path of the cache file for a given
descriptor
.put_file
(filepath, obj)Save
obj
tofilepath
usingnumpy.save()
.load_file
(filepath)Load
obj
fromfilepath
usingnumpy.load()
.Inherited from : py: class:Cache
put
(descriptor, obj)Store
obj
under the cache root usingput_file()
.load
(descriptor)Load object from file
descriptor
+FILE_ENDING
under cache root.put_batch
(descriptors, objs)Store a batch of
objs
in this cache using accordingdescriptors
.load_batch
(descriptors[, return_none_if])Load a batch of objects.
clear
()Remove all files from cache root.
descriptors
()Provide paths of all cached files with ending stripped and relative to cache root.
as_dict
()Return a dict with all cached descriptors and objects.
wrap
(getitem[, descriptor_map])Add this cache to the deterministic function
getitem
(which should have no side effects).Special Methods:
Inherited from : py: class:FileCache
__init__
([cache_root])Init.
__repr__
()Return repr(self).
Inherited from : py: class:Cache
__repr__
()Return repr(self).
__add__
(other)Return a (cascaded) cache which will first lookup
self
thenother
with default sync mode.__radd__
(other)Return a (cascaded) cache which will first lookup
other
thenself
with default sync mode.
- Parameters
cache_root (str) –
- FILE_ENDING = '.npy'
The file ending to append to descriptors to get the file path. See
FileCache.descriptor_to_fp()
. This is the standard fornumpy.save()
.