NPYCache
- class hybrid_learning.datasets.caching.NPYCache(cache_root=None)[source]
Bases:
FileCacheFile cache that uses numpy saving and loading mechanism to cache
torch.Tensorobjects. Cannot use sparse tensor representation for saving for now. For further details see super class.Public Data Attributes:
The file ending to append to descriptors to get the file path.
Inherited from : py: class:FileCache
The file ending to append to descriptors to get the file path.
Public Methods:
put_file(filepath, obj)Save
objtofilepathusingnumpy.save().load_file(filepath)Load
objfromfilepathusingnumpy.load().Inherited from : py: class:FileCache
put(descriptor, obj)Store
objunder the cache root usingput_file().load(descriptor)Load object from file
descriptor+FILE_ENDINGunder cache root.clear()Remove all files from cache root.
descriptors()Provide paths of all cached files with ending stripped and relative to cache root.
descriptor_to_fp(descriptor)Return the file path of the cache file for a given
descriptor.put_file(filepath, obj)Save
objtofilepathusingnumpy.save().load_file(filepath)Load
objfromfilepathusingnumpy.load().Inherited from : py: class:Cache
put(descriptor, obj)Store
objunder the cache root usingput_file().load(descriptor)Load object from file
descriptor+FILE_ENDINGunder cache root.put_batch(descriptors, objs)Store a batch of
objsin this cache using accordingdescriptors.load_batch(descriptors[, return_none_if])Load a batch of objects.
clear()Remove all files from cache root.
descriptors()Provide paths of all cached files with ending stripped and relative to cache root.
as_dict()Return a dict with all cached descriptors and objects.
wrap(getitem[, descriptor_map])Add this cache to the deterministic function
getitem(which should have no side effects).Special Methods:
Inherited from : py: class:FileCache
__init__([cache_root])Init.
__repr__()Return repr(self).
Inherited from : py: class:Cache
__repr__()Return repr(self).
__add__(other)Return a (cascaded) cache which will first lookup
selfthenotherwith default sync mode.__radd__(other)Return a (cascaded) cache which will first lookup
otherthenselfwith default sync mode.
- Parameters
cache_root (str) –
- FILE_ENDING = '.npy'
The file ending to append to descriptors to get the file path. See
FileCache.descriptor_to_fp(). This is the standard fornumpy.save().