evaluate
- hybrid_learning.concepts.train_eval.train_eval_funs.evaluate(model, kpi_fns, val_loader, prefix='val', callbacks=None, callback_context=None, ensemble_count=None)[source]
Evaluate the model wrt loss and
metric_fns
on the test data. The reduction method for the KPI values ismean
. The device used is the one of the model lies on (seedevice_of()
). Distributed models are not supported.- Parameters
model (Module) – the model to evaluate; must return a single tensor or sequence of tensors on call to forward
kpi_fns (Dict[str, Callable]) – dictionary with KPI IDs and evaluation functions for the KPIs to evaluate
val_loader (
torch.utils.data.DataLoader
) – data loader with data to evaluate onprefix (str) – prefix to prepend to KPI names for the final
pandas.Series
namingcallbacks (Optional[List[Mapping[CallbackEvents, Callable]]]) – callbacks to feed with callback context after each batch and after finishing evaluation
callback_context (Optional[Dict[str, Any]]) – dict with any additional context to be handed over to the callbacks as keyword arguments
ensemble_count (Optional[int]) – if set to a value >0 treat the output of the model as
ensemble_count
outputs stacked in dim 0
- Returns
Dictionary of all KPI values in the format:
{<KPI-name>: <KPI value as float>}
- Return type
Series