Dataset Tooling =============== The tooling for datasets is collected in the module :py:mod:`hybrid_learning.datasets`. For details have a look at the :ref:`apiref/index:API Reference`. .. contents:: :depth: 2 :local: :backlinks: top Base dataset handles -------------------- .. autosummary:: :nosignatures: ~hybrid_learning.datasets.base.BaseDataset ~hybrid_learning.datasets.activations_handle.ActivationDatasetWrapper Custom dataset handles ---------------------- .. py:currentmodule:: hybrid_learning.datasets.custom .. autosummary:: coco fasseg broden Caching handles --------------- Cache handles will allow to insert and read objects into/from a cache. For details see :ref:`userguide/custom_dataset_handles/caching:Dataset Caching`. .. automodsumm:: hybrid_learning.datasets.caching :skip: Hashable, Any, Optional, Dict, Iterable, List, Union, Callable, Tuple, Collection, Sequence, ToTensor :classes-only: :nosignatures: Transformations --------------- Transformations can be used to modify data tuples or values. .. rubric:: Transformations for tuples .. automodsumm:: hybrid_learning.datasets.transforms.tuple_transforms :skip: Any, Callable, Dict, Tuple, Optional, Iterable, List, Sequence, Set, Union, Mapping, Transform, Compose, TupleTransforms, TwoTupleTransforms, TwoTuple, TensorTwoTuple, TensorThreeTuple :classes-only: :nosignatures: .. rubric:: Transformations for dicts .. automodsumm:: hybrid_learning.datasets.transforms.dict_transforms :skip: Any, Callable, Dict, Tuple, Optional, Iterable, List, Sequence, Set, Union, Mapping, Transform :classes-only: :nosignatures: .. rubric:: Transformations for (tensor) images .. automodsumm:: hybrid_learning.datasets.transforms.image_transforms :skip: Any, Callable, Dict, Tuple, Optional, Iterable, Mapping, List, Sequence, Set, Union, BatchBoxBloat, BatchConvOp, BatchIntersectDecode2D, BatchIntersectEncode2D, BatchIoUEncode2D, Transform :classes-only: :nosignatures: .. rubric:: Intersection and intersection over union encoders .. automodsumm:: hybrid_learning.datasets.transforms.encoder :skip: Any, Callable, Dict, Tuple, Optional, Iterable, Mapping, List, Sequence, Set, Union :classes-only: :nosignatures: Visualization and Utility Functions ----------------------------------- .. rubric:: From :py:mod:`hybrid_learning.datasets.data_visualization` .. automodsumm:: hybrid_learning.datasets.data_visualization :skip: to_pil_image :functions-only: .. rubric:: From :py:mod:`hybrid_learning.datasets.base` .. automodsumm:: hybrid_learning.datasets.base :functions-only: