Custom dataset handles ====================== The custom dataset handles are meant to handle file stored image datasets, and are all derived from :py:class:`~hybrid_learning.datasets.base.BaseDataset`. Available custom handles are: .. py:currentmodule:: hybrid_learning.datasets.custom .. autosummary:: :nosignatures: coco.keypoints_dataset.KeypointsDataset coco.mask_dataset.ConceptDataset broden.BrodenHandle fasseg.FASSEGHandle Useful wrappers are: .. py:currentmodule:: hybrid_learning.datasets.activations_handle .. autosummary:: :nosignatures: ActivationDatasetWrapper .. rubric:: Tips and tricks: Merge transformations Also worth noting are the :py:class:`~hybrid_learning.fuzzy_logic.logic_base.merge_operation.Merge` ``dict`` transformations that allow boolean combination of masks and (boolean) classification labels. For details see their class documentation and the example given in :ref:`userguide/custom_dataset_handles/broden:Boolean Label Combinations`. .. rubric:: Tips and tricks: Caching All custom handles offer the option to specify a :py:attr:`~hybrid_learning.datasets.base.BaseDataset.transforms_cache` handle. This can be used to cache costly transformation or loading operations, e.g. in-memory or by dumping intermediate results to files. For details on available cache types and combination options have a look at the :py:mod:`~hybrid_learning.datasets.caching` module. See also :ref:`userguide/custom_dataset_handles/caching:Dataset Caching` .. rubric:: Examples In the following, usage examples for some handles are shown. For details about the dataset formats have a look at the class documentations. .. toctree:: :maxdepth: 1 coco broden activation_map_handling caching